| 注册
首页|期刊导航|长江科学院院报|基于小波变换的隧道大变形组合预测方法

基于小波变换的隧道大变形组合预测方法

张碧

长江科学院院报2017,Vol.34Issue(7):94-98,105,6.
长江科学院院报2017,Vol.34Issue(7):94-98,105,6.DOI:10.11988/ckyyb.20160404

基于小波变换的隧道大变形组合预测方法

Combinatorial Forecasting Method for Large Deformationof Tunnel Based on Wavelet Transform

张碧1

作者信息

  • 1. 陕西铁路工程职业技术学院,陕西 渭南 714000
  • 折叠

摘要

Abstract

In order to improve the accuracy of tunnel deformation prediction, firstly,we discussed the denoising results by different wavelet transformation parameters,and divided the tunnel deformation data into trend term and error term.Secondly,we established individual and combinatorial forecasting models to predict the trend term and error term, and compared the results so as to verify the proposed prediction model in this paper.The results show that the denoising results of Sym8 wavelet function are the optimum by using the soft threshold selection method,heuristic threshold criteria and eight-layer wavelet decomposition.By removing the maximum error and then determine the weights of the rest predicted values in reciprocal order, the prediction accuracy of trend term and error term by combinatorial forecasting model has improved by 2.5-3.5 times and 4.0-5.4 times respectively than that by individual forecasting model, hence the reliability of the prediction results are enhanced.Through example analysis of the prediction model,we verified the feasibility and validity of this prediction method,and the results of high feasibility could meet the requirements of large deformation prediction.

关键词

隧道工程/小波去噪/大变形/组合预测/剔除最大误差倒数法/对比分析

Key words

tunneling engineering/wavelet denoising/large deformation/combination forecasting/error reciprocal after removing maximum error/comparative analysis

分类

交通工程

引用本文复制引用

张碧..基于小波变换的隧道大变形组合预测方法[J].长江科学院院报,2017,34(7):94-98,105,6.

长江科学院院报

OA北大核心CSCDCSTPCD

1001-5485

访问量0
|
下载量0
段落导航相关论文