| 注册
首页|期刊导航|电讯技术|数据库样本缺失下的雷达辐射源识别

数据库样本缺失下的雷达辐射源识别

李蒙 朱卫纲

电讯技术2017,Vol.57Issue(7):784-788,5.
电讯技术2017,Vol.57Issue(7):784-788,5.DOI:10.3969/j.issn.1001-893x.2017.07.009

数据库样本缺失下的雷达辐射源识别

Radar Emitter Identification in Database Sample Missing Condition

李蒙 1朱卫纲2

作者信息

  • 1. 装备学院研究生管理大队 北京 101416
  • 2. 装备学院光电装备系 北京 101416
  • 折叠

摘要

Abstract

Present radar emitter identification based on machine learning technology mostly assumes that training set and test set are same.When the radar database and the true distribution of the signals are biased,the traditional classification method is ineffective.Thus,the theory of transfer learning is introduced into the identification system,and a radar emitter signal identification method based on structural discovery and re-balancing is proposed.By means of database data and target data clustering analysis and resampling,the distribution is corrected and the new data is put to support vector machine(SVM) for training and identifying reconnaissance samples.The simulation results show that the classification performance of the support vector machine model in the new training sample set has been greatly improved.

关键词

雷达辐射源识别/迁移学习/结构发现/再平衡/支持向量机

Key words

radar emitter identification/transfer learning/structural discovery/re-balancing/support vector machine(SVM)

分类

信息技术与安全科学

引用本文复制引用

李蒙,朱卫纲..数据库样本缺失下的雷达辐射源识别[J].电讯技术,2017,57(7):784-788,5.

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文