| 注册
首页|期刊导航|测试技术学报|基于多传感器的神经网络和D-S证据理论在故障诊断中的应用

基于多传感器的神经网络和D-S证据理论在故障诊断中的应用

周国宪 伍星 刘韬

测试技术学报2017,Vol.31Issue(4):290-297,8.
测试技术学报2017,Vol.31Issue(4):290-297,8.DOI:10.3969/j.issn.1671-7449.2017.04.003

基于多传感器的神经网络和D-S证据理论在故障诊断中的应用

Multi-Sensor Application in Fault Diagnosis Based on Neural Network and D-S Evidence Theory

周国宪 1伍星 1刘韬1

作者信息

  • 1. 昆明理工大学 机电工程学院, 云南 昆明 650500
  • 折叠

摘要

Abstract

To improve the accuracy of rolling bearing fault diagnosis,this paper puts forward a multi-sensor fault diagnosis method based on neural network and D-S evidence theory,and test the validity of model with three sensors monitoring data.First,two acceleration sensors and a acoustic sensor are used to collect vibration signals and noise signals of rolling bearing.Then,by using Ensemble Empirical Mode Decomposition(EEMD) decompose the vibration signals of two acceleration sensors and get each Intrinsic Mode function(IMF) component,the energy characteristics of each IMF component was extracted as the input vector of thesubnet 1 and subnet 2 respectively;meanwhile using WP(wavelet packet) extract noise signals energy spectrum feature and the result was taken as the input parameters of the subnet3;Finally,The local diagnostic results of three sub-networks are normalized processing and obtained each independent evidence,applying weighted correction method adjuste the conflict evidences and obtain the final fault diagnostic results by using D-S evidence theory to fuse the information of each evidence.The experimental results show that the method can effectively enhance the accuracy and reduce the uncertainty in rolling bearing fault diagnosis.

关键词

多传感器/D-S证据理论/滚动轴承/故障诊断/信息融合

Key words

multi-sensor/D-S evidence theory/rolling bearing/fault diagnosis/information fusion

分类

信息技术与安全科学

引用本文复制引用

周国宪,伍星,刘韬..基于多传感器的神经网络和D-S证据理论在故障诊断中的应用[J].测试技术学报,2017,31(4):290-297,8.

基金项目

国家自然科学基金资助项目(51465022) (51465022)

测试技术学报

OACSTPCD

1671-7449

访问量3
|
下载量0
段落导航相关论文