| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|联合空谱信息的高光谱影像半监督ELM分类

联合空谱信息的高光谱影像半监督ELM分类

付琼莹 余旭初 张鹏强 魏祥坡

华中科技大学学报(自然科学版)2017,Vol.45Issue(7):89-93,121,6.
华中科技大学学报(自然科学版)2017,Vol.45Issue(7):89-93,121,6.DOI:10.13245/j.hust.170717

联合空谱信息的高光谱影像半监督ELM分类

Semi-supervised ELM combined with spectral-spatial features for hyperspectral imagery classification

付琼莹 1余旭初 1张鹏强 1魏祥坡1

作者信息

  • 1. 中国人民解放军信息工程大学地理空间信息学院, 河南 郑州 450001
  • 折叠

摘要

Abstract

For hyperspectral imagery′s processing, the number of labeled samples is often small, and the quality of them is uneven, and there exist a large number of unlabeled samples.Aiming at this problem, a semi-supervised algorithm based on extreme learning machine for hyperspectral imagery classification was presented.Firstly, according to the theory of the graph, the undirected weighted graph was constructed, and the graph was combined with both labeled and unlabeled samples′ spectral and spatial features.Then, by considering the smoothness constraint and the structure minimization principle, the classification objective function was constructed.Finally, parameters were solved and semi-supervised classification of hyperspectral image was achieved.The experimental results show that the proved method can improve the classification accuracy effectively by using unlabeled samples′ information when the labeled samples′ size is small.

关键词

高光谱影像/极限学习机/半监督学习/核方法/影像分类

Key words

hyperspectral imagery/extreme learning machine/semi-supervised learning/kernel method/imagery classification

分类

信息技术与安全科学

引用本文复制引用

付琼莹,余旭初,张鹏强,魏祥坡..联合空谱信息的高光谱影像半监督ELM分类[J].华中科技大学学报(自然科学版),2017,45(7):89-93,121,6.

基金项目

国家自然科学基金资助项目(41501482) (41501482)

河南省科技攻关计划资助项目(15202210014) (15202210014)

地理信息工程国家重点实验室开放基金资助项目(SKLGIE2015-M-3-1,SKLGIE2015-M-3-2). (SKLGIE2015-M-3-1,SKLGIE2015-M-3-2)

华中科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文