| 注册
首页|期刊导航|计算机工程与应用|一种改进的SUBCLU高维子空间聚类算法

一种改进的SUBCLU高维子空间聚类算法

罗靖 钱雪忠 韩利钊 宋威

计算机工程与应用2017,Vol.53Issue(14):130-137,8.
计算机工程与应用2017,Vol.53Issue(14):130-137,8.DOI:10.3778/j.issn.1002-8331.1609-0111

一种改进的SUBCLU高维子空间聚类算法

Improved SUBCLU subspace clustering algorithm for high dimen-sional data

罗靖 1钱雪忠 1韩利钊 1宋威1

作者信息

  • 1. 江南大学 物联网工程学院 物联网技术应用教育部工程研究中心,江苏 无锡 214122
  • 折叠

摘要

Abstract

SUBCLU algorithm is a subspace clustering algorithm for high dimensional data. However, it produces a lot of intermediate clusters during the iteration of finding maximum interesting subspace clusters by using bottom-up search strategy. A large amount of time is consumed in the process of generating these intermediate clusters. Focus on this prob-lem, algorithm BDFS-SUBCLU(the deep-first search with back-trace-based SUBCLU)is proposed. To avoid producing the intermediate clusters and reduce the time complexity, this algorithm uses deep-first search with back-trace to find max-imum interesting subspace clusters. To avoid that the adjacent clusters affected by those special data points merge to one, BDFS-SUBCLU constraints the key point in every subspace. The experiments conducted on synthetic datasets and real data-sets show that BDFS-SUBCLU improves efficiency and accuracy compared to SUBCLU.

关键词

SUBCLU/子空间聚类/高维数据/兴趣子空间

Key words

SUBCLU/subspace clustering/high dimensional data/interesting subspace

分类

信息技术与安全科学

引用本文复制引用

罗靖,钱雪忠,韩利钊,宋威..一种改进的SUBCLU高维子空间聚类算法[J].计算机工程与应用,2017,53(14):130-137,8.

基金项目

中央高校基础研究项目资助(No.JUSRP51510,No.JUSRP51635B). (No.JUSRP51510,No.JUSRP51635B)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文