| 注册
首页|期刊导航|计算技术与自动化|固定翼巡线无人机实时蚁群算法路径规划

固定翼巡线无人机实时蚁群算法路径规划

郑武略 尚涛 金钊

计算技术与自动化2017,Vol.36Issue(2):109-112,4.
计算技术与自动化2017,Vol.36Issue(2):109-112,4.

固定翼巡线无人机实时蚁群算法路径规划

Online Path Planning Offixed Wing with Ant Colony Algorithm in Line Patrol

郑武略 1尚涛 1金钊2

作者信息

  • 1. 广州市南方电网 广东 广州 510000
  • 2. 电子科技大学 四川 成都 611731
  • 折叠

摘要

Abstract

Because of premature in traditional ACO(Ant Colony Optimal),this article comes up with a improved algorithm and use this algorithm to realize the multifactor control in UAV online path planning to improve the speed and global search.By combing local evaporation with global pheromone update,the ACO has a higher speed in finding optimal planning path.What's more,it's suit for the self adjust UAV path planning.Through the improving ACO,a more precise and efficiency path can be found.

关键词

无人机/实时路径规划/蚁群算法

Key words

unmanned aerial vehicle(UAV)/path planning online/ant colony optimal(ACO)

分类

信息技术与安全科学

引用本文复制引用

郑武略,尚涛,金钊..固定翼巡线无人机实时蚁群算法路径规划[J].计算技术与自动化,2017,36(2):109-112,4.

计算技术与自动化

OACSTPCD

1003-6199

访问量0
|
下载量0
段落导航相关论文