| 注册
首页|期刊导航|工矿自动化|基于递归图和局部非负矩阵分解的轴承故障诊断

基于递归图和局部非负矩阵分解的轴承故障诊断

成洁 李思燃

工矿自动化2017,Vol.43Issue(7):81-85,5.
工矿自动化2017,Vol.43Issue(7):81-85,5.DOI:10.13272/j.issn.1671-251x.2017.07.017

基于递归图和局部非负矩阵分解的轴承故障诊断

Bearing fault diagnosis based on recurrence plots and local non-negative matrix factorization

成洁 1李思燃2

作者信息

  • 1. 武警后勤学院军交运输系,天津300309
  • 2. 火箭军指挥学院通信系,湖北武汉430014
  • 折叠

摘要

Abstract

In view of non-stationary characteristics of bearing vibration signal and difficulty of extracting fault parameters in reality,a bearing fault diagnosis based on recurrence plots and local non-negative matrix factorization was proposed.Firstly,recurrence plots of the collected bearing vibration signal is analyzed and gray scale is generated.Then,characteristic parameters of the recurrence plots are extracted by the local non-negative matrix decomposition to obtain coefficient coding matrix.Finally,classifier is used for pattern recognition of coding matrix,so as to achieve automatic diagnosis of bearing failure.The method is applied to four kinds of typical bearing fault diagnosis cases,and the application results show that the method can calculate characteristic parameters adaptively for recurrence plots of different operating conditions and avoid influence of human factor on accuracy rate of diagnosis with better adaptivity and robustness.

关键词

轴承/故障诊断/特征参数/递归图/局部非负矩阵分解

Key words

bearing/fault diagnosis/characteristic parameter/recurrence plots/local non-negative matrix factorization

分类

矿业与冶金

引用本文复制引用

成洁,李思燃..基于递归图和局部非负矩阵分解的轴承故障诊断[J].工矿自动化,2017,43(7):81-85,5.

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文