| 注册
首页|期刊导航|数据采集与处理|基于随机游走的流形学习与可视化

基于随机游走的流形学习与可视化

邵超 万春红 张啸剑

数据采集与处理2017,Vol.32Issue(3):559-569,11.
数据采集与处理2017,Vol.32Issue(3):559-569,11.DOI:10.16337/j.1004-9037.2017.03.015

基于随机游走的流形学习与可视化

Manifold Learning and Visualization Based on Random Walk

邵超 1万春红 1张啸剑1

作者信息

  • 1. 河南财经政法大学计算机与信息工程学院,郑州,450046
  • 折叠

摘要

Abstract

The existing global manifold learning algorithms are relatively sensitive to the neighborhood size,which is difficult to select efficiently.The reason is mainly because the neighborhood graph is constructed based on Euclidean distance,by which shortcut edges tend to be introduced into the neighborhood graph.To overcome this problem,a global manifold learning algorithm is proposed based on random walk,called the random walk-based isometric mapping (RW-ISOMAP).Compared with Euclidean distance,the commute time distance,achieved by the random walk on the neighborhood graph,can measure the similarity between the given data within the nonlinear geometric structure to a certain extent,thus it can provide robust results and is more suitable to construct the neighborhood graph.Consequently,by constructing the neighborhood graph based on the commute time distance,RW-ISOMAP is less sensitive to the neighborhood size and more robust than the existing global manifold learning algorithms.Finally,the experiment verifies the effectiveness of RW-ISOMAP.

关键词

全局流形学习/等距映射/邻域图/随机游走/通勤时间距离

Key words

global manifold learning/isometric mapping/neighborhood graph/random walk/commute time distance

分类

信息技术与安全科学

引用本文复制引用

邵超,万春红,张啸剑..基于随机游走的流形学习与可视化[J].数据采集与处理,2017,32(3):559-569,11.

基金项目

国家自然科学基金(61202285)资助项目 (61202285)

河南省教育厅科学技术研究重点(14B520020)资助项目. (14B520020)

数据采集与处理

OA北大核心CSCDCSTPCD

1004-9037

访问量0
|
下载量0
段落导航相关论文