| 注册
首页|期刊导航|水资源与水工程学报|多元线性回归与BP神经网络模型在次洪量预测中的对比研究

多元线性回归与BP神经网络模型在次洪量预测中的对比研究

冯鑫伟 黄领梅 沈冰

水资源与水工程学报2017,Vol.28Issue(3):123-126,133,5.
水资源与水工程学报2017,Vol.28Issue(3):123-126,133,5.DOI:10.11705/j.issn.1672-643X.2017.03.23

多元线性回归与BP神经网络模型在次洪量预测中的对比研究

Comparative study on multivariate linear regression and BP neural network model in the prediction of flood volume

冯鑫伟 1黄领梅 1沈冰1

作者信息

  • 1. 西安理工大学 西北旱区生态水利工程国家重点实验室培育基地,陕西 西安 710048
  • 折叠

摘要

Abstract

Aiming at the problem of flood volume forecast in semi-arid area, we selected 15 flood data of the Caoping hydrological station in Chabagou watershed from 1980 to 2010.According to the measured single storm, flood control data in Chabagou watershed, considering the warp land dam area, storm rainfall, rainfall center, antecedent rainfall and others factors, combined with SPSS and MATLAB software, multivariate linear regression model and BP neural network model for the prediction of flood volume were built.The prediction results of the two models show that multivariate linear regression model and BP neural network model can be better applied to flood volume prediction, and the BP neural network model is superior to multivariate linear regression model.Research result can provide decision-making basis for dam safety in the flood season.

关键词

淤地坝/次洪量预报/多元线性回归/BP神经网络

Key words

warp land dam/flood volume prediction/multiple linear regression/BP neural network

分类

建筑与水利

引用本文复制引用

冯鑫伟,黄领梅,沈冰..多元线性回归与BP神经网络模型在次洪量预测中的对比研究[J].水资源与水工程学报,2017,28(3):123-126,133,5.

基金项目

国家自然科学基金项目(51679184) (51679184)

陕西省水利厅项目(2016slkj-12) (2016slkj-12)

水资源与水工程学报

OACSCDCSTPCD

1672-643X

访问量0
|
下载量0
段落导航相关论文