| 注册
首页|期刊导航|水资源与水工程学报|基于支持向量机决策树的泵站稳态工况运行下状态识别

基于支持向量机决策树的泵站稳态工况运行下状态识别

洪建 李臣明 高红民

水资源与水工程学报2017,Vol.28Issue(3):163-167,5.
水资源与水工程学报2017,Vol.28Issue(3):163-167,5.DOI:10.11705/j.issn.1672-643X.2017.03.30

基于支持向量机决策树的泵站稳态工况运行下状态识别

State recognition of the running pump station based on theDecision-tree SVM classifier

洪建 1李臣明 1高红民1

作者信息

  • 1. 河海大学 计算机与信息学院,南京 210098
  • 折叠

摘要

Abstract

A Decision-tree SVM classifier is applied to the state recognition of the running pump station based on statistical learning theory(SLT).SVM is a novel machine learning method based on SLT and powerful for the problems with small sample, nonlinear and high dimension.The data of pump station system tends to have higher dimension, and the data is dimensioned down by principal component analysis.The Decision-tree SVM classifier, trained with the sampling data from the above dealing process and forming an identification model, identifies the state of the pump station.The test results show that the proposed classifier has an excellent performance on correcting ratio and training speed.

关键词

泵站/状态识别/支持向量机/决策树

Key words

pump station/state recognition/support vector machine (SVM)/decision-tree

分类

建筑与水利

引用本文复制引用

洪建,李臣明,高红民..基于支持向量机决策树的泵站稳态工况运行下状态识别[J].水资源与水工程学报,2017,28(3):163-167,5.

水资源与水工程学报

OACSCDCSTPCD

1672-643X

访问量5
|
下载量0
段落导航相关论文