| 注册
首页|期刊导航|长沙理工大学学报(自然科学版)|基于KL距离的卷积神经网络人脸特征提取模型

基于KL距离的卷积神经网络人脸特征提取模型

罗可 周安众

长沙理工大学学报(自然科学版)2017,Vol.14Issue(2):85-91,7.
长沙理工大学学报(自然科学版)2017,Vol.14Issue(2):85-91,7.

基于KL距离的卷积神经网络人脸特征提取模型

Face feature extraction model of convolutional neural network based on KL divergence

罗可 1周安众1

作者信息

  • 1. 长沙理工大学计算机与通信工程学院,湖南长沙410004
  • 折叠

摘要

Abstract

In order to overcome the shortcomings of Euclidean distance measurement in face feature expression,a neural network face feature extraction model based on KL divergence is proposed.The convolution neural network is used to transform the input sample into a probability distribution.The distance between different samples is measured by the KL divergence,and a cost function is defined to optimize the distance.The back propagation algorithm is used to modify the parameters of convolution neural network,the network has a stronger ability to distinguish between facial features.The extracted face feature vector is transformed into neural network classifier to performs face validation with YouTube face database.The experimental results show that the method can not only improve the error rate but also improve the generalization performance.

关键词

人脸识别/人脸验证/特征提取/KL距离/度量学习/卷积神经网络

Key words

face recognition/face verification/feature extraction/KL divergence/metric learning/convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

罗可,周安众..基于KL距离的卷积神经网络人脸特征提取模型[J].长沙理工大学学报(自然科学版),2017,14(2):85-91,7.

基金项目

国家自然科学基金资助项目(11671125,71371065) (11671125,71371065)

长沙理工大学学报(自然科学版)

1672-9331

访问量0
|
下载量0
段落导航相关论文