| 注册
首页|期刊导航|电力系统自动化|基于数据挖掘的梯级水电站群指令调度优化方法

基于数据挖掘的梯级水电站群指令调度优化方法

牛文静 申建建 冯仲恺 程春田 郭有安

电力系统自动化2017,Vol.41Issue(15):66-73,8.
电力系统自动化2017,Vol.41Issue(15):66-73,8.DOI:10.7500/AEPS20161030002

基于数据挖掘的梯级水电站群指令调度优化方法

Data Mining Based Optimization Method for Instruction Dispatching of Cascade Hydropower Station Group

牛文静 1申建建 1冯仲恺 1程春田 1郭有安2

作者信息

  • 1. 大连理工大学水电与水信息研究所, 辽宁省大连市 116024
  • 2. 华能澜沧江水电股份有限公司, 云南省昆明市 650214
  • 折叠

摘要

Abstract

In recent years,the incessant enhancement of expansion of hydropower size and its meticulous management is posing huge challenges to hydropower system dispatching optimization.Hence,based on the data mining technology,an optimization method of instruction dispatching is designed to ensure computational efficiency and the validity of results.In the method,some key indexes are first selected from the massive operation data of the hydropower system,and fuzzy clustering is used to build the decision-making database.Then,the large system decomposition coordination model and progressive optimization algorithm are employed to search for the optimal decision.The proposed method is applied to the cascaded hydropower station group located on the Lancang River.The results show that with the method the feasible output curve for all the plants can be obtained expeditiously.

关键词

梯级水电站群/数据挖掘/短期优化调度/指令调度

Key words

cascade hydropower station group/data mining/short-term optimal dispatching/instruction dispatching

引用本文复制引用

牛文静,申建建,冯仲恺,程春田,郭有安..基于数据挖掘的梯级水电站群指令调度优化方法[J].电力系统自动化,2017,41(15):66-73,8.

基金项目

国家重点基础研究发展计划(973计划)资助项目(2013CB035906) (973计划)

国家自然科学基金重大国际合作项目(51210014) (51210014)

国家自然科学基金面上项目(51579029).This work is supported by National Basic Research Program of China (973 Program) (No.2013CB035906) and National Natural Science Foundation of China (No.51210014,No.51579029). (51579029)

电力系统自动化

OA北大核心CSCDCSTPCD

1000-1026

访问量0
|
下载量0
段落导航相关论文