| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于支持向量机的加密流量识别方法

基于支持向量机的加密流量识别方法

程光 陈玉祥

东南大学学报(自然科学版)2017,Vol.47Issue(4):655-659,5.
东南大学学报(自然科学版)2017,Vol.47Issue(4):655-659,5.DOI:10.3969/j.issn.1001-0505.2017.04.005

基于支持向量机的加密流量识别方法

Identification method of encrypted traffic based on support vector machine

程光 1陈玉祥2

作者信息

  • 1. 东南大学计算机科学与工程学院, 南京 211189
  • 2. 东南大学教育部计算机网络与信息集成重点实验室, 南京 211189
  • 折叠

摘要

Abstract

The existing methods of encrypted traffic classification are difficult to effectively distinguish encrypted traffic and compressed file traffic.Through analyzing the encrypted traffic, txt traffic, doc traffic, jpg traffic,and compressed file traffic, it is found that the methods based on information entropy can effectively separate the low entropy traffic and the high entropy traffic.However, this method cannot distinguish non-encrypted compressed file traffic with byte randomness and full flow pseudo randomness.Therefore, the relative entropy feature vector {h0,h1,h2,h3} is employed to distinguish the low entropy traffic and the high entropy traffic,and the Monte Carlo simulation method is used to estimate the error of π value, perror, which can be used to distinguish the local random traffic and the whole random traffic.Finally, a support vector machine (SVM)-based identification method (SVM-ID) for encrypted traffic and non encrypted traffic is proposed.And, the SVM-ID method uses the feature space ΦSVM={h0,h1,h2,h3,perror} as the input.The SVM-ID method is compared with the relative entropy method.The experimental results show that the proposed method can not only identify the encrypted traffic well, but also distinguish the encrypted traffic and the non-encrypted compressed file traffic.

关键词

加密流量识别/相对熵/蒙特卡洛仿真/支持向量机

Key words

encrypted traffic identification/relative entropy/Monte Carlo simulation/support vector machine

分类

信息技术与安全科学

引用本文复制引用

程光,陈玉祥..基于支持向量机的加密流量识别方法[J].东南大学学报(自然科学版),2017,47(4):655-659,5.

基金项目

国家高技术研究发展计划(863计划)资助项目(2015AA015603)、国家自然科学基金资助项目(61602114)、中兴通讯研究基金资助项目、软件新技术与产业化协同创新中心资助项目. (863计划)

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量0
|
下载量0
段落导航相关论文