| 注册
首页|期刊导航|东南大学学报(自然科学版)|基于光流约束自编码器的动作识别

基于光流约束自编码器的动作识别

李亚玮 金立左 孙长银 崔桐

东南大学学报(自然科学版)2017,Vol.47Issue(4):691-696,6.
东南大学学报(自然科学版)2017,Vol.47Issue(4):691-696,6.DOI:10.3969/j.issn.1001-0505.2017.04.011

基于光流约束自编码器的动作识别

Action recognition based on optical flow constrained auto-encoder

李亚玮 1金立左 1孙长银 1崔桐2

作者信息

  • 1. 东南大学自动化学院, 南京 210096
  • 2. 中国电科集团28所, 南京 210007
  • 折叠

摘要

Abstract

To improve the capability of feature learning in extracting motion information such as amplitudes and directions and to increase the recognition accuracy, an optical flow constrained auto-encoder is proposed to learn action features.The optical flow constrained auto-encoder is an unsupervised feature learning algorithm based on single layer regularized auto-encoder.The algorithm uses the neural network to reconstruct the video pixels and use the corresponding optical flows in video blocks as a revised regularization.The neural network learns the appearances of the action and encodes the motion information simultaneously.The associated codes are used as the final action features.The experimental results on several well-known benchmark datasets show that the optical flow constrained auto-encoder can detect the motion parts efficiently.On the same recognition framework, the proposed algorithm outperforms the state-of-the-art single layer action feature learning algorithms.

关键词

动作识别/特征学习/正则化自编码器/光流约束自编码器

Key words

action recognition/feature learning/regularized auto-encoder/optical flow constrained auto-encoder

分类

信息技术与安全科学

引用本文复制引用

李亚玮,金立左,孙长银,崔桐..基于光流约束自编码器的动作识别[J].东南大学学报(自然科学版),2017,47(4):691-696,6.

基金项目

国家自然科学基金资助项目 (61402426). (61402426)

东南大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1001-0505

访问量3
|
下载量0
段落导航相关论文