华中师范大学学报(自然科学版)2017,Vol.51Issue(4):449-454,6.DOI:10.19603/j.cnki.1000-1190.2017.04.006
基于离散Legenda变换的Hamilton系统的变分算法和辛结构
Variational calculation and symplectic structure of Hamiltonian systems based the discrete Legenda transformations
摘要
Abstract
Three types of discrete Legenda transformations are obtained when the displacement coordinates are defined implicitly by different momentum.The different forms of Hamiltonian equations are constructed based on the difference Legenda trans formations.The symplectic structures of the three Hamilton systems are given,respectively, The numerical calculations of a two-degree of-freedom nonlinear harmonic oscillator show the advantage of variational numerical method.关键词
差分离散变分原理/离散Legenda变换/变分算子Key words
discrete difference variational principle/discrete Legenda transformations/variational integrators分类
数理科学引用本文复制引用
夏丽莉,国忠金,张伟..基于离散Legenda变换的Hamilton系统的变分算法和辛结构[J].华中师范大学学报(自然科学版),2017,51(4):449-454,6.基金项目
国家自然科学基金项目(11502071,11290152) (11502071,11290152)
北京市朝阳区博士后基金项目 ()
河南省教育厅基础研究项目(17A140015). (17A140015)