吉首大学学报(自然科学版)2017,Vol.38Issue(4):1-9,9.DOI:10.3969/j.cnki.jdxb.2017.04.001
一类多孔介质型扩散互惠模型的共存态和渐近性
Coexistence and Asymptotic Behavior of a Cooperating Model with Porous Medium Type of Diffusion
摘要
Abstract
This paper deals with a Dirichlet boundary value problem for a three-species cooperating model with porous medium type of diffusion.It is proved that the time-dependent problem possesses a unique bounded global solution under appropriate conditions;and in addition to the trivial and semi-trivial solutions,there exists a positive maximal solution and a positive minimal solution to the corresponding steady state problem.Moreover,the time-dependent solution converges to the maximal solution for one class of initial functions,and to the minimal solution for another class of initial functions.The above convergence property holds true for any reaction rates in the reaction function.The results indicate that the dynamic behavior of a cooperating model with porous medium type of diffusion can be quite different from the model with constant diffusion terms.关键词
互惠模型/多孔介质/共存态/渐近性Key words
cooperating model/porous medium/coexistence/asymptotic behavior分类
数理科学引用本文复制引用
高海燕..一类多孔介质型扩散互惠模型的共存态和渐近性[J].吉首大学学报(自然科学版),2017,38(4):1-9,9.基金项目
National Natural Science Foundation of China (11361055) (11361055)
Natural Science Foundation of Gansu Province (1606RJZA038) (1606RJZA038)