| 注册
首页|期刊导航|计算机应用研究|基于栈式降噪自编码器的协同过滤算法

基于栈式降噪自编码器的协同过滤算法

周洋 陈家琪

计算机应用研究2017,Vol.34Issue(8):2336-2339,4.
计算机应用研究2017,Vol.34Issue(8):2336-2339,4.DOI:10.3969/j.issn.1001-3695.2017.08.023

基于栈式降噪自编码器的协同过滤算法

Stacked denoising autoencoder for collaborative filtering algorithm

周洋 1陈家琪1

作者信息

  • 1. 上海理工大学 光电信息与计算机工程学院,上海 200090
  • 折叠

摘要

Abstract

This paper proposed a new method called stacked denoising autoencoder based on collaborative filtering after studying the way of improving precision of recommended algorithm.SDAE was a mul-layer deep learning model which could learn significant dependencies from input information.It used ratings given to items by users to learn the latent feature,got results of dimensionality reduction after PCA to calculate attribute similarities.Then it added the grade similarities computed with concealed feature as the final result.Finally, it emploied similarities between items to generate the top-N recommendation list.Experiments on MovieLens show that the proposed algorithm has higher recall rate and can settle the missing ratings and cold start problems in some way.

关键词

推荐系统/协同过滤/深度学习/栈式降噪自编码器

Key words

recommender system/collaborative filtering/deep learning/stacked denoising autoencoder(SDAE)

分类

信息技术与安全科学

引用本文复制引用

周洋,陈家琪..基于栈式降噪自编码器的协同过滤算法[J].计算机应用研究,2017,34(8):2336-2339,4.

基金项目

上海市教委科研创新基金资助项目(12zz146) (12zz146)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文