| 注册
首页|期刊导航|计算机应用研究|基于小生境遗传优化的Rao-Blackwellised SLAM算法

基于小生境遗传优化的Rao-Blackwellised SLAM算法

陈建军 廖小飞 吴赟 陈光 庄新闯

计算机应用研究2017,Vol.34Issue(8):2368-2371,4.
计算机应用研究2017,Vol.34Issue(8):2368-2371,4.DOI:10.3969/j.issn.1001-3695.2017.08.030

基于小生境遗传优化的Rao-Blackwellised SLAM算法

Rao-Blackwellised SLAM based on niched genetic optimized method

陈建军 1廖小飞 1吴赟 2陈光 1庄新闯2

作者信息

  • 1. 东华大学 信息科学与技术学院,上海 201620
  • 2. 东华大学 数字化纺织服装技术教育部工程研究中心,上海 201620
  • 折叠

摘要

Abstract

Simulation localization and mapping (SLAM) is one of the key problems in realizing robot self-navigation.As an effective method for SLAM location, it widely used Rao-Blackwellised particle filter(RBPF) in the field of real time location.However, the RBPF behavior of frequent resampling results in particle impoverishment problem along with particles increased.In order to solve the problem and improve the algorithm performance, this paper proposed a RBPF SLAM algorithm based on improved niched genetic optimization (INGO-RBPF).The INGO-RBPF algorithm solves the robot path estimation using improved Rao-Blackwellised particle filter(PF), and solves the map estimation using extended Kalman filter (EKF).Finally the MATLAB simulations prove that INGO-RBPF performs well on estimated accuracy, stability, disturbance and location accuracy, and therefore it is suitable to apply in SLAM real-time location.

关键词

同步定位与地图创建(SLAM)/Rao-Blackwellised粒子滤波器/小生境遗传算法/INGO-RBPF

Key words

simulation location and mapping (SLAM)/Rao-Blackwellised particle filter/niched genetic algorithm/INGO-RBPF

分类

信息技术与安全科学

引用本文复制引用

陈建军,廖小飞,吴赟,陈光,庄新闯..基于小生境遗传优化的Rao-Blackwellised SLAM算法[J].计算机应用研究,2017,34(8):2368-2371,4.

基金项目

国家自然科学基金资助项目(71171045) (71171045)

中央高校基本科研业务费专项基金资助项目(15D110422) (15D110422)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文