| 注册
首页|期刊导航|计算机应用研究|基于特征选择的网络入侵检测方法

基于特征选择的网络入侵检测方法

戴远飞 陈星 陈宏 叶靓 林俊鑫 郭文忠

计算机应用研究2017,Vol.34Issue(8):2429-2433,5.
计算机应用研究2017,Vol.34Issue(8):2429-2433,5.DOI:10.3969/j.issn.1001-3695.2017.08.043

基于特征选择的网络入侵检测方法

Feature selection based approach to network intrusion detection

戴远飞 1陈星 2陈宏 1叶靓 2林俊鑫 3郭文忠1

作者信息

  • 1. 福州大学 数学与计算机科学学院,福州 350108
  • 2. 福建省网络计算与智能信息处理重点实验室,福州 350108
  • 3. 国网信通亿力科技有限责任公司,福州 350003
  • 折叠

摘要

Abstract

The intrusion detection system deals with huge amount of data which contains redundant and noisy features causing poor detection rate and slow training process.This paper introduced feature selection algorithm into the field of intrusion detection,and put forward a intrusion detection method based on feature selection.It used different discretization and feature selection algorithm to extract difference of multiple optimal feature subset,followed by normalizing the extracted feature subsets to perform a normalizing process.At last it applied the classification algorithm to create a model.Compared with the traditional algorithm (decision tree,naive Bayes,support vector machine),the experimental results demonstrate that the approach can effectively improve the precision of attack-detection and training cycle.

关键词

入侵检测/特征选择/机器学习

Key words

intrusion detection/feature selection/machine learning

分类

信息技术与安全科学

引用本文复制引用

戴远飞,陈星,陈宏,叶靓,林俊鑫,郭文忠..基于特征选择的网络入侵检测方法[J].计算机应用研究,2017,34(8):2429-2433,5.

基金项目

国家自然科学基金资助项目(61402111) (61402111)

福建科技重大项目(2015H6013) (2015H6013)

厦门市重大科技计划项目(3502Z20151010) (3502Z20151010)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文