| 注册
首页|期刊导航|计算机应用与软件|基于平均区域划分的Laplacian稀疏编码的图像分类

基于平均区域划分的Laplacian稀疏编码的图像分类

史莹 万源 陈晓丽

计算机应用与软件2017,Vol.34Issue(7):143-148,6.
计算机应用与软件2017,Vol.34Issue(7):143-148,6.DOI:10.3969/j.issn.1000-386x.2017.07.027

基于平均区域划分的Laplacian稀疏编码的图像分类

IMAGE CLASSIFICATION BASED ON AVERAGE REGION PARTITIONING AND LAPLACIAN SPARSE CODING

史莹 1万源 1陈晓丽1

作者信息

  • 1. 武汉理工大学理学院 湖北 武汉 430070
  • 折叠

摘要

Abstract

For the sparse coding method, the coding process is unstable and the pyramid matching method can not make the fusion feature very sparse, an image classification method based on Laplacian sparse coding with average region partition is proposed.Firstly, local invariant feature transform (SIFT) feature extraction was applied to the original image.Then, Laplacian regularization was added to the sparse coding method to encode the local features so that the similar features have similar code words and the feature vectors were fused by average region partition and max pooling.Finally, multi-class SVM classifier was used to classify the images.Experimental results on several standard image datasets show that the algorithm has higher classification accuracy.

关键词

稀疏编码/Laplacian正则化/平均区域划分/最大值融合

Key words

Sparse coding/ Laplacian regularization/ Average region division/ Maximum fusion

分类

信息技术与安全科学

引用本文复制引用

史莹,万源,陈晓丽..基于平均区域划分的Laplacian稀疏编码的图像分类[J].计算机应用与软件,2017,34(7):143-148,6.

基金项目

国家自然科学基金项目(81271513,91324201). (81271513,91324201)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文