| 注册
首页|期刊导航|计算机应用与软件|基于子空间联合模型的视觉跟踪

基于子空间联合模型的视觉跟踪

杨国亮 唐俊 朱松伟 王建

计算机应用与软件2017,Vol.34Issue(7):154-158,170,6.
计算机应用与软件2017,Vol.34Issue(7):154-158,170,6.DOI:10.3969/j.issn.1000-386x.2017.07.029

基于子空间联合模型的视觉跟踪

VISUAL TRACKING BASED ON SUBSPACE COLLABORATIVE MODEL

杨国亮 1唐俊 1朱松伟 1王建1

作者信息

  • 1. 江西理工大学电气工程与自动化学院 江西 赣州 341000
  • 折叠

摘要

Abstract

Target tracking is an important part of computer vision, and its robustness is always restricted to target occlusion, illumination variation and target pose change and so on.To this end, this paper proposes a visual tracking algorithm based on subspace collaborative model.In order to overcome the influence of occlusion on target tracking, this algorithm rectifies incremental subspace error by result of occlusion detection using local dynamic sparse representation.Besides, the similarity between target template and candidate template is computed based on local dynamic sparse representation.In the framework of particle filter, this algorithm is achieved based on combining incremental error with similarity.The experimental results on several sequences show that this algorithm has better performance of tracking.

关键词

视觉跟踪/增量子空间/粒子滤波/联合模型/局部动态稀疏表示

Key words

Visual tracking/ Incremental subspace/ Particle filter/ Collaborative model/ Local dynamic sparse representation

分类

信息技术与安全科学

引用本文复制引用

杨国亮,唐俊,朱松伟,王建..基于子空间联合模型的视觉跟踪[J].计算机应用与软件,2017,34(7):154-158,170,6.

基金项目

国家自然科学基金项目(51365017,61305019) (51365017,61305019)

江西省科技厅青年科学基金项目(20132bab211032). (20132bab211032)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量3
|
下载量0
段落导航相关论文