| 注册
首页|期刊导航|自动化学报|间歇过程最优迭代学习控制的发展:从基于模型到数据驱动

间歇过程最优迭代学习控制的发展:从基于模型到数据驱动

池荣虎 侯忠生 黄彪

自动化学报2017,Vol.43Issue(6):917-932,16.
自动化学报2017,Vol.43Issue(6):917-932,16.DOI:10.16383/j.aas.2017.c170086

间歇过程最优迭代学习控制的发展:从基于模型到数据驱动

Optimal Iterative Learning Control of Batch Processes: From Model-based to Data-driven

池荣虎 1侯忠生 2黄彪3

作者信息

  • 1. 青岛科技大学自动化与电子工程学院 青岛266042中国
  • 2. 北京交通大学先进控制系统研究所 北京100044 中国
  • 3. 阿尔伯塔大学化学与材料工程学院 埃德蒙顿T6G2G6加拿大
  • 折叠

摘要

Abstract

A brief overview on model-based optimal iterative learning control (ILC) and data-driven optimal ILC for batch processes is presented.Model-based optimal ILC relies on an exactly known linear model.There are many systematic methods and tools for the optimal ILC controller design and analysis.The foundational of design and analysis tool of data-driven optimal ILC methods for nonlinear repetitive processes is iterative dynamic linearization.This work briefly reviews the model-based optimal ILC with its latest development.The data-driven iterative dynamic linearization method is revisited in detail with its properties and distinct features.The general data-driven optimal iterative learning control,including data-driven optimal ILC for a complete trajectory tracking,data-driven optimal point-to-point ILC for multiple intermediate points tracking,and data-driven optimal terminal ILC for the terminal output tracking,is overviewed and discussed.The key issues in terms of research of optimal ILC,such as stochastic initial conditions,iteration-varying reference trajectory/points,input and output constraints,high-order learning laws,and computational complexity are also presented and discussed.Moreover,this paper highlights and compares the model-based optimal ILC and the generalized data-driven optimal ILC,and demonstrates their relation and difference to facilitate general understanding of these methods.Finally,it is shown that the data-driven ILC methods are receiving increasing interest owing to the increasing complexity of batch processes.Some corresponding challenging problems are presented as well.

关键词

间歇过程/基于模型的最优迭代学习控制/迭代动态线性化/数据驱动的最优迭代学习控制

Key words

Batch processes/model-based optimal iterative learning control/iterative dynamic linearization/data-driven optimal iterative learning control

引用本文复制引用

池荣虎,侯忠生,黄彪..间歇过程最优迭代学习控制的发展:从基于模型到数据驱动[J].自动化学报,2017,43(6):917-932,16.

基金项目

国家自然科学基金(61374102,61433002),山东省泰山学者工程资助 Supported by National Natural Science Foundation of China (61374102,61433002),Taishan Scholar Program of Shandong Province of China (61374102,61433002)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文