| 注册
首页|期刊导航|电测与仪表|利用小波能量特征的增长型自组织神经网络同调机组分群方法

利用小波能量特征的增长型自组织神经网络同调机组分群方法

杨越 王涛 顾雪平 岳贤龙 徐振华 邱丽君

电测与仪表2017,Vol.54Issue(14):7-13,7.
电测与仪表2017,Vol.54Issue(14):7-13,7.

利用小波能量特征的增长型自组织神经网络同调机组分群方法

Coherency identification method using growth-oriented self-organizing neural networks and wavelet energy feature

杨越 1王涛 1顾雪平 1岳贤龙 1徐振华 2邱丽君3

作者信息

  • 1. 华北电力大学 新能源电力系统国家重点实验室,河北 保定 071003
  • 2. 国网福建省电力有限公司电力科学研究院, 福州 350007
  • 3. 中国电力科学研究院,北京 100192
  • 折叠

摘要

Abstract

This paper proposes a novel method to identify coherent generator groups using wavelet transform multi-scale space energy distribution feature and improved self-organizing neural networks. Firstly, the identification criteria of coherent generator groups are defined, and then, the features of the unit power angle rocking curve are extracted using multi-scale spatial energy wavelet distribution method. Furthermore, the time domain, frequency domain and wavelet energy feature vectors are used as inputs of growth-oriented self-organizing neural networks to obtain grouping of different precisions by adjusting the threshold λ. Finally, the recognition results on the IEEE-39 bus system, considering the features of only time-frequency domain and both the wavelet energy and time-frequency domain, are compared. The results show that the proposed method taking into account the feathers of both the wavelet energy and time-frequency domain can obtain higher accuracy.

关键词

小波分析/多尺度空间能量/自组织神经网络/特征提取/同调机组

Key words

wavelet analysis/multi-scale spatial energy/self-organizing neural network/feature extraction/coherent generator

分类

信息技术与安全科学

引用本文复制引用

杨越,王涛,顾雪平,岳贤龙,徐振华,邱丽君..利用小波能量特征的增长型自组织神经网络同调机组分群方法[J].电测与仪表,2017,54(14):7-13,7.

基金项目

国家自然科学基金资助项目(51677071) (51677071)

国家电网公司科技项目(XT71-16-034) (XT71-16-034)

中央高校基本科研业务费专项资金资助项目(2016MS130) (2016MS130)

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文