| 注册
首页|期刊导航|通信学报|面向单幅图像去雨的非相干字典学习及其稀疏表示研究

面向单幅图像去雨的非相干字典学习及其稀疏表示研究

汤红忠 王翔 张小刚 李骁 毛丽珍

通信学报2017,Vol.38Issue(7):28-35,8.
通信学报2017,Vol.38Issue(7):28-35,8.DOI:10.11959/j.issn.1000-436x.2017149

面向单幅图像去雨的非相干字典学习及其稀疏表示研究

Incoherent dictionary learning and sparse representation for single-image rain removal

汤红忠 1王翔 2张小刚 3李骁 1毛丽珍3

作者信息

  • 1. 湘潭大学信息工程学院,湖南湘潭 411105
  • 2. 湖南大学电气与信息工程学院,湖南长沙 410082
  • 3. 湘潭大学控制工程研究所,湖南湘潭 411105
  • 折叠

摘要

Abstract

The incoherent dictionary learning and sparse representation algorithm was present and it was applied to sin-gle-image rain removal. The incoherence of the dictionary was introduced to design a new objective function in the dic-tionary learning, which addressed the problem of reducing the similarity between rain atoms and non-rain atoms. The di-visibility of rain dictionary and non-rain dictionary could be ensured. Furthermore, the learned dictionary had similar properties to the tight frame and approximates the equiangular tight frame. The high frequency in the rain image could be decomposed into a rain component and a non-rain component by performing sparse coding based learned incoherent dic-tionary, then the non-rain component in the high frequency and the low frequency were fused to remove rain. Experi-mental results demonstrate that the learned incoherent dictionary has better performance of sparse representation. The re-covered rain-free image has less residual rain, and preserves effectively the edges and details. So the visual effect of re-covered image is more sharpness and natural.

关键词

非相干字典/字典学习/稀疏表示/单幅图像去雨

Key words

incoherent dictionary/dictionary learning/sparse representation/single-image rain removal

分类

信息技术与安全科学

引用本文复制引用

汤红忠,王翔,张小刚,李骁,毛丽珍..面向单幅图像去雨的非相干字典学习及其稀疏表示研究[J].通信学报,2017,38(7):28-35,8.

基金项目

国家自然科学基金资助项目(No.61573299, No.61673162, No.61672216, No.61602397) (No.61573299, No.61673162, No.61672216, No.61602397)

湖南省自然科学基金资助项目(No.2017JJ3315, No.2017JJ2251, No.2016JJ3125) The National Natural Science Foundation of China (No.61573299, No.61673162, No.61672216, No.61602397), The Natural Science Foundation of Hunan Province (No.2017JJ3315, No.2017JJ2251, No.2016JJ3125) (No.2017JJ3315, No.2017JJ2251, No.2016JJ3125)

通信学报

OA北大核心CSCDCSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文