| 注册
首页|期刊导航|中国电机工程学报|基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化

基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化

徐哲炜 郑成航 张涌新 张军 郭一杉 李清毅 胡达清 高翔

中国电机工程学报2017,Vol.37Issue(15):4408-4414,7.
中国电机工程学报2017,Vol.37Issue(15):4408-4414,7.DOI:10.13334/j.0258-8013.pcsee.161942

基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化

Operation Optimization of Flue Gas Desulfurization System in Power Plant Based on an Improved Association Rules Algorithm

徐哲炜 1郑成航 1张涌新 1张军 1郭一杉 1李清毅 2胡达清 2高翔1

作者信息

  • 1. 能源清洁利用国家重点实验室(浙江大学),浙江省杭州市310027
  • 2. 浙江天地环保科技有限公司,浙江省杭州市310003
  • 折叠

摘要

Abstract

Focused on the problems of instability and high consumption of energy and materials in wet flue gas desulfurization (WFGD),an improved association rules algorithm was applied to optimize the operating conditions.To reduce memory occupation and time consumption,the scale of candidate item sets and candidate association rules was downsized by adding pruning conditions and restraining the antecedents and consequents.The results indicate that the SO2 average emission concentration corresponding to the optimized working conditions decreases by 31% compared with all historical data and the time cost reduces by 93.9% with the optimization of the improved algorithm.Comparing the cost of each working condition in optimized conditions library,a low-cost working condition can be chosen as the optimization goal,which will help lower the SO2 emission achievement and reduce the energy and materials consumption in the meantime.The improved association rules algorithm accomplished an effective reduction of SO2 emission with high efficiency and will be of great value for energy conservation.

关键词

关联规则/二氧化硫/Apriori/优化/燃煤电厂

Key words

association rules/SO2/Apriori/optimization/coal-fired power plant

分类

资源环境

引用本文复制引用

徐哲炜,郑成航,张涌新,张军,郭一杉,李清毅,胡达清,高翔..基于改进关联规则算法的燃煤电厂脱硫系统工况参数优化[J].中国电机工程学报,2017,37(15):4408-4414,7.

基金项目

浙江省环保厅科研计划课题(2015A018) (2015A018)

国家自然科学基金项目(U1609212) (U1609212)

国家科技支撑计划课题(2014BAC21B04).Scientific Research Projects from Department of Environmental Protection,Zhejiang Province (2015A018) (2014BAC21B04)

the National Science and Technology Support Program (U1609212) (U1609212)

the National Science and Technology Support Program (2014BAC21B04). (2014BAC21B04)

中国电机工程学报

OA北大核心CSCDCSTPCD

0258-8013

访问量0
|
下载量0
段落导航相关论文