| 注册
首页|期刊导航|桂林电子科技大学学报|基于最大相关熵的自编码网络人脸识别

基于最大相关熵的自编码网络人脸识别

匡勇建 莫建文 张顺岚

桂林电子科技大学学报2017,Vol.37Issue(3):197-202,6.
桂林电子科技大学学报2017,Vol.37Issue(3):197-202,6.

基于最大相关熵的自编码网络人脸识别

Face recognition method based on auto-encoder network with maximum correlation entropy

匡勇建 1莫建文 1张顺岚1

作者信息

  • 1. 桂林电子科技大学 信息与通信学院,广西 桂林 541004
  • 折叠

摘要

Abstract

To overcome the problem of noise in the auto-encoder network and its variants where mean square error is regard as reconstruction function,a stacked sparse auto-encoder network is proposed,the maximum relative entropy is used as the reconstruction function of network and a multi-layer network with sparse constraint is constructed in the method.Experimental results demonstrate that the proposed method is more robustness than the traditional auto-encoder network on the YaleB and AR databases whether the training samples are noisy or not noisy.In addition,it achieves better recognition performance and the learned features are more powerful.

关键词

自编码网络/均方误差/最大相关熵/稀疏约束项/鲁棒性

Key words

auto-encoder network/mean square error/maximum correlation entropy/sparse constraint/robustness

分类

信息技术与安全科学

引用本文复制引用

匡勇建,莫建文,张顺岚..基于最大相关熵的自编码网络人脸识别[J].桂林电子科技大学学报,2017,37(3):197-202,6.

基金项目

国家自然科学基金(61362021,61661017) (61362021,61661017)

广西自然科学基金(2014GXNSFDA118035) (2014GXNSFDA118035)

桂林电子科技大学研究生教育创新计划(YJCX201534) (YJCX201534)

桂林电子科技大学学报

1673-808X

访问量0
|
下载量0
段落导航相关论文