| 注册
首页|期刊导航|计算机工程与应用|基于密度比例的密度峰值聚类算法

基于密度比例的密度峰值聚类算法

高诗莹 周晓锋 李帅

计算机工程与应用2017,Vol.53Issue(16):10-17,8.
计算机工程与应用2017,Vol.53Issue(16):10-17,8.DOI:10.3778/j.issn.1002-8331.1704-0227

基于密度比例的密度峰值聚类算法

Clustering by fast search and find of density peaks based on density-raito.

高诗莹 1周晓锋 2李帅3

作者信息

  • 1. 东北大学 计算机科学与工程学院,沈阳 110000
  • 2. 中国科学院 沈阳自动化研究所,沈阳 110016
  • 3. 中国科学院 网络化控制系统重点实验室,沈阳 110016
  • 折叠

摘要

Abstract

CFSFDP(Clustering by Fast Search and Find of Density Peaks)is a new density-based clustering algorithm, which can cluster the non-spherical data with fewer parameters and high speed of clustering. However, when the density of different clusters vary widely, it is hard to find the clusters with sparse density, so that the accuracy of clustering will be decreased. To solve this problem, this paper proposes a density-raito based CFSFDP that short of R-CFSFDP. In this algo-rithm, the density-ratio is introduced into CFSFDP to make clusters with sparse density easily identifiable. To validate the algorithm, experiments are conducted with 9 data sets(2 synthetic data sets, 7 UCI data sets). The experimental results show that, when the cluster shape is complex and the density of different clustersvary widely, it makes the cluster centers easier to be determined and has a higher accuracy of the clustering than CFSFDP.

关键词

聚类/密度峰值/密度比例/密度变化

Key words

clustering/density peaks/density-raito/varying densities

分类

信息技术与安全科学

引用本文复制引用

高诗莹,周晓锋,李帅..基于密度比例的密度峰值聚类算法[J].计算机工程与应用,2017,53(16):10-17,8.

基金项目

辽宁省科学技术计划项目(No.2015106015). (No.2015106015)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文