| 注册
首页|期刊导航|计算机工程与应用|基于隐马尔可夫模型的音乐分类

基于隐马尔可夫模型的音乐分类

肖晓红 张懿 刘冬生 欧阳春娟

计算机工程与应用2017,Vol.53Issue(16):138-143,165,7.
计算机工程与应用2017,Vol.53Issue(16):138-143,165,7.DOI:10.3778/j.issn.1002-8331.1603-0441

基于隐马尔可夫模型的音乐分类

Music classification based on Hidden Markov Models.

肖晓红 1张懿 2刘冬生 1欧阳春娟1

作者信息

  • 1. 井冈山大学 电子与信息工程学院,江西 吉安 343009
  • 2. 清华大学 电子工程系,北京 100084
  • 折叠

摘要

Abstract

Music genre is one of the most common ways used in digital music database management. A music automatic classification scheme based on Hidden Markov Models(HMMs)is proposed. While considering traditional timbre, another important feature--Tempo is taken into consideration. Meanwhile, the bagging is used to train two groups of HMM for classification, which obtain good results. In this paper, optimized hyper-parameters in the HMM structure, the number of states and Gaussian mixtures, and find the best HMM parameters. Furthermore, the traditional model and origi-nal model are tested on the well-known GTZAN database. The results show that the proposed method considering tempo feature acquires better classification accuracy compared to the traditional model.

关键词

分类/音乐类型/节奏/隐马尔可夫模型

Key words

classification/music genre/tempo/Hidden Markov Models

分类

信息技术与安全科学

引用本文复制引用

肖晓红,张懿,刘冬生,欧阳春娟..基于隐马尔可夫模型的音乐分类[J].计算机工程与应用,2017,53(16):138-143,165,7.

基金项目

国家自然科学基金(No.61462046) (No.61462046)

江西省教育厅科学技术研究项目(No.GD14559). (No.GD14559)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量1
|
下载量0
段落导航相关论文