| 注册
首页|期刊导航|计算机工程与应用|基于块分类和字典优化的K-SVD图像去噪研究

基于块分类和字典优化的K-SVD图像去噪研究

华志胜 付丽华

计算机工程与应用2017,Vol.53Issue(16):187-192,6.
计算机工程与应用2017,Vol.53Issue(16):187-192,6.DOI:10.3778/j.issn.1002-8331.1610-0234

基于块分类和字典优化的K-SVD图像去噪研究

K-SVD image denoising based on noisy image blocks classification and dictionary opti-mization.

华志胜 1付丽华2

作者信息

  • 1. 南开大学 数学科学学院,天津 300071
  • 2. 中国地质大学(武汉)数学与物理学院,武汉 430074
  • 折叠

摘要

Abstract

K-Singular Value Decomposition(K-SVD)algorithm is often used for image denoising by creating an over-complete dictionary for sparse representation. K-SVD algorithm is effective and can keep the original image information as well. However, the image structure is often ignored. Furthermore, noise atoms are still existed in the trained dictionary obtained by K-SVD algorithm, which will result in the poor denoising performance. According to these limitations, a new denoising algorithm is proposed in this paper. First, a more targeted dictionary is obtained by the classification of noisy image blocks. Second, the dictionary atoms are classified into the noise and noiselesscategories, and then the optimized dictionary will be achieved by replacing the noise atoms by overcomplete discrete cosine transform dictionary atoms. Third, the image is denoised using the optimized dictionary. Simulation studies show that in comparison with the curvelet-based denoising method, the non-local mean denoising method and the classical K-SVD denoising method, the new approach has better denoising ability.

关键词

图像去噪/稀疏表示/K-SVD算法/图像块分类/过完备字典/字典优化

Key words

image denoising/sparse representation/K-Singular Value Decomposition(K-SVD)algorithm/image blocks classification/overcomplete dictionary/dictionary optimization

分类

信息技术与安全科学

引用本文复制引用

华志胜,付丽华..基于块分类和字典优化的K-SVD图像去噪研究[J].计算机工程与应用,2017,53(16):187-192,6.

基金项目

教育部新世纪优秀人才支持计划(No.NCET-13-1011) (No.NCET-13-1011)

湖北省自然科学基金(No.2015CFB555) (No.2015CFB555)

华中师范大学中央高校基本科研业务费教育科学专项(No.230-20205160288) (No.230-20205160288)

中央高校科研业务费(No.CCNU15A05022). (No.CCNU15A05022)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量2
|
下载量0
段落导航相关论文