| 注册
首页|期刊导航|计算机应用与软件|一种巴氏系数改进相似度的协同过滤算法

一种巴氏系数改进相似度的协同过滤算法

武文琪 王建芳 张朋飞 刘永利

计算机应用与软件2017,Vol.34Issue(8):265-269,275,6.
计算机应用与软件2017,Vol.34Issue(8):265-269,275,6.DOI:10.3969/j.issn.1000-386x.2017.08.047

一种巴氏系数改进相似度的协同过滤算法

COLLABORATIVE FILTERING ALGORITHM BASED ON IMPROVED SIMILARITY MEASURE WITH BHATTACHARYYA COEFFICIENT

武文琪 1王建芳 1张朋飞 1刘永利1

作者信息

  • 1. 河南理工大学计算机科学与技术学院 河南 焦作 454000
  • 折叠

摘要

Abstract

Aiming at the problem of low-quality recommendation and data sparsity, we proposed a collaborative filtering algorithm based on improved similarity measure with Bhattacharyya coefficient.First, we use Jaccard similarity to calculate the global similarity between users based on neighbor cooperative filtering algorithm.Secondly, we use the Bhattacharyya coefficient to obtain the whole law of the grade distribution.And we combine the Pearson correlation coefficient to calculate the local similarity.Finally, we fuse the global similarity and local similarity to obtain final similarity metric.The experimental results show that algorithm can get better recommendation results on sparse data sets.It effectively mitigates the sparseness of scoring data and improves the recommended accuracy.

关键词

协同过滤/数据稀疏性/巴氏系数/相似度计算

Key words

Collaborative filtering/Data sparsity/Bhattacharyya coefficient/Similarity measure

分类

信息技术与安全科学

引用本文复制引用

武文琪,王建芳,张朋飞,刘永利..一种巴氏系数改进相似度的协同过滤算法[J].计算机应用与软件,2017,34(8):265-269,275,6.

基金项目

国家自然科学基金项目(61202286) (61202286)

河南省高等学校青年骨干教师资助计划项目(2015GGJS-068). (2015GGJS-068)

计算机应用与软件

OA北大核心CSTPCD

1000-386X

访问量2
|
下载量0
段落导航相关论文