| 注册
首页|期刊导航|计算机与现代化|基于余弦相似度的边界样本选择方法

基于余弦相似度的边界样本选择方法

李春利 柳振东 惠康华

计算机与现代化Issue(8):66-70,5.
计算机与现代化Issue(8):66-70,5.DOI:10.3969/j.issn.1006-2475.2017.08.014

基于余弦相似度的边界样本选择方法

Boundary Sample Selection Method Based on Cosine Similarity

李春利 1柳振东 1惠康华1

作者信息

  • 1. 中国民航大学计算机科学与技术学院,天津 300300
  • 折叠

摘要

Abstract

The training of convolution neural network usually requires a lot of training samples, which causes the training time be too long.To solve this problem, this paper presents a boundary sample selection method based on cosine similarity.We select boundary samples as the training set of convolution neural network, and carry out example selection experiment on the MNIST, CIFAR10 and SVHN data sets.Then a convolutional neural network is used to carry out experiments.Experimental results show that this method can preserve the typical samples in the training set and eliminate redundant samples.Thereby, the number of training samples is reduced, the network training time is shortened and the learning efficiency of network is improved.

关键词

深度学习/卷积神经网络/模式识别/边界数据/图像识别/样本选择

Key words

deep learning/convolutional neural network/pattern recognition/boundary data/image recognition/sample selection

分类

信息技术与安全科学

引用本文复制引用

李春利,柳振东,惠康华..基于余弦相似度的边界样本选择方法[J].计算机与现代化,2017,(8):66-70,5.

基金项目

中国民航大学科研启动基金资助项目(2010QD10X) (2010QD10X)

计算机与现代化

OACSTPCD

1006-2475

访问量0
|
下载量0
段落导航相关论文