| 注册
首页|期刊导航|高技术通讯|基于卷积神经网络模型的遥感图像分类

基于卷积神经网络模型的遥感图像分类

付秀丽 黎玲萍 毛克彪 谭雪兰 李建军 孙旭 左志远

高技术通讯2017,Vol.27Issue(3):203-212,10.
高技术通讯2017,Vol.27Issue(3):203-212,10.DOI:10.3772/j.issn.1002-0470.2017.03.002

基于卷积神经网络模型的遥感图像分类

Remote sensing image classification based on CNN model

付秀丽 1黎玲萍 1毛克彪 2谭雪兰 3李建军 4孙旭 5左志远4

作者信息

  • 1. 北京石油化工学院信息工程学院 北京 102617
  • 2. 北京化工大学信息科学与技术学院 北京 100029
  • 3. 中国农业科学院农业资源与农业区划研究所呼伦贝尔草原生态系统国家野外科学观测研究站 北京 100081
  • 4. 湖南农业大学资源环境学院 长沙 410128
  • 5. 中南林业科技大学计算机与信息工程学院 长沙 410004
  • 折叠

摘要

Abstract

The remote sensing image classification was studied.In consideration of the problems of feature extraction difficulty and low classification accuracy of the shallow structure classification model of support vector machine, a convolutional neural network model was designed for remote sensing image classification.The model comprises the input layer, convolution layer, full connection layer and output layer, and uses the SoftMax classifier for classification.The LandsatTM5 remote sensing image of Fujin city in June 6, 2010 was used as the data source to perform the classification experiment.The experimental results show that the proposed model employs several convolutional and pooling layers to extract the nonlinear and invariant features from the remote sensing image.These features are useful for image classification and target detection.The classification accuracy of the model was 92.57% when it was used in this image.Compared to the support vector machine classifier, the classification accuracy of this model was improved by 5%.Therefore, this model has a greater advantage in remote sensing image classification.

关键词

卷积神经网络(CNN)/模型/支持向量机(SVM)/特征提取/遥感图像分类

Key words

convolutional neural network (CNN)/model/support vector machine (SVM)/feature extraction/remote sensing image classification

引用本文复制引用

付秀丽,黎玲萍,毛克彪,谭雪兰,李建军,孙旭,左志远..基于卷积神经网络模型的遥感图像分类[J].高技术通讯,2017,27(3):203-212,10.

基金项目

国家自然科学基金(41571427),国家重点研发计划重点专项(2016YFC0500203),北京市属高校拔尖人才(CIT&TCD201504047)和北京市教委科研计划 (KM201410017008)资助项目. (41571427)

高技术通讯

OA北大核心CSTPCD

1002-0470

访问量0
|
下载量0
段落导航相关论文