| 注册
首页|期刊导航|计算机工程与应用|自适应变异尺度系数和混合选择的回溯搜索算法

自适应变异尺度系数和混合选择的回溯搜索算法

徐新林 胡中波 何先平 苏清华

计算机工程与应用2017,Vol.53Issue(17):6-13,107,9.
计算机工程与应用2017,Vol.53Issue(17):6-13,107,9.DOI:10.3778/j.issn.1002-8331.1703-0570

自适应变异尺度系数和混合选择的回溯搜索算法

Improved backtracking search optimization algorithm with self-adaptable mutation scale factor and hybrid selection strategy

徐新林 1胡中波 1何先平 1苏清华1

作者信息

  • 1. 长江大学 信息与数学学院,湖北 荆州 434023
  • 折叠

摘要

Abstract

The Backtracking Search Optimization Algorithm(BSA)is an evolution algorithm based on population. The algorithm has good global search ability. However, it has the shortcoming of low convergence speed. Aiming at the short-coming, an improved backtracking search optimization algorithm with self-adaptable mutation scale factor and hybrid selection strategy is proposed. The modified mutation scale factor, which may self-adaptable decrease in overall trend, is based on the Metropolis criterion. The modified selection strategy is a hybrid between the whole q% priority selection method and tournament selection method. In the selection process, a certain percentage of outstanding individuals are given priority to enter the next generation, and the rest individuals are counterpointed to select the individuals with higher fitness. The simulation experiments on 5 complex constrained optimization problems are performed by the improved algorithm. The experimental results are compared with those of original algorithm and other similar algorithms. Statistical results show that the improved algorithm has effectiveness and competitiveness.

关键词

回溯搜索算法/约束优化问题/变异尺度系数/选择策略/Metropolis准则

Key words

backtracking search optimization algorithm/constrained optimization problems/mutation scale factor/selection strategy/Metropolis criterion

分类

信息技术与安全科学

引用本文复制引用

徐新林,胡中波,何先平,苏清华..自适应变异尺度系数和混合选择的回溯搜索算法[J].计算机工程与应用,2017,53(17):6-13,107,9.

基金项目

国家自然科学基金(No.61663009,No.61370092) (No.61663009,No.61370092)

湖北省教育厅重点科研项目(No.D20161306). (No.D20161306)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文