| 注册
首页|期刊导航|计算机与数字工程|一种改进的支持向量机参数寻优方法

一种改进的支持向量机参数寻优方法

吕金锐

计算机与数字工程2017,Vol.45Issue(7):1318-1322,5.
计算机与数字工程2017,Vol.45Issue(7):1318-1322,5.DOI:10.3969/j.issn.1672-9722.2017.07.017

一种改进的支持向量机参数寻优方法

An Improvement of Support Vector Machine Parameter Optimization Method

吕金锐1

作者信息

  • 1. 太原城市职业技术学院 太原030027
  • 折叠

摘要

Abstract

The penalty parameter and the kernel parameter are the main factors to determine SVMs' generalization performance and the optimization of these two parameters is one of the key issues,which needs to be solved in the application of SVM.Based on the research of SVM theory,through programming,the paper uses some standard test data sets to compare the performance of uniform design method in the RBF kernel SVM parameter optimization problems.Through the comparison of accuracy,it is showed that the further precision can be obtained compared with the traditional method.

关键词

SVM/均方设计/RBF核参数

Key words

SVM/uniform design/RBF kerne

分类

信息技术与安全科学

引用本文复制引用

吕金锐..一种改进的支持向量机参数寻优方法[J].计算机与数字工程,2017,45(7):1318-1322,5.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文