| 注册
首页|期刊导航|计算机与数字工程|基于云计算的基板玻璃缺陷神经网络分类模型研究

基于云计算的基板玻璃缺陷神经网络分类模型研究

李青 周波

计算机与数字工程2017,Vol.45Issue(7):1373-1376,4.
计算机与数字工程2017,Vol.45Issue(7):1373-1376,4.DOI:10.3969/j.issn.1672-9722.2017.07.030

基于云计算的基板玻璃缺陷神经网络分类模型研究

Study on Neural Network Classification Model of Substrate Glass Defects Based on Cloud Computing

李青 1周波2

作者信息

  • 1. 东旭集团有限公司 石家庄050021
  • 2. 平板显示玻璃技术和装备国家工程实验室 石家庄 050035
  • 折叠

摘要

Abstract

Identify types of glass substrate defects is an important basis for the adjustment and optimization of the production process.In this paper basic mode and principle of cloud computing are studied,combined with practical problems of LCD glass substrate production,based on cloud computing glass substrate defects classify model of neural network is designed,the allocation model in processing and transmission of data packets,machine scheduling,cloud computing server are studied briefly,the model has to enhance the convergence speed of neural network,the sharing of resources is realized,production efficiency,is improved redundant computation and algorithm of thermally are upgraded,the maintenance difficulty and other advantages are reduced.For the glass substrate manufacturer it has a certain reference value.

关键词

基板玻璃/缺陷分类/云计算/神经网络/图像处理

Key words

substrate glass/defect classification/cloud computing/neural network/image processing

分类

信息技术与安全科学

引用本文复制引用

李青,周波..基于云计算的基板玻璃缺陷神经网络分类模型研究[J].计算机与数字工程,2017,45(7):1373-1376,4.

基金项目

国家科技支撑计划(编号:2013BAE03B02)资助. (编号:2013BAE03B02)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文