| 注册
首页|期刊导航|计算机与数字工程|基于SVM和有监督描述子学习算法的脑MR图像颅骨分割方法

基于SVM和有监督描述子学习算法的脑MR图像颅骨分割方法

黄勇其 史文博 周志勇 庞树茂 佟宝同 赵凌霄 戴亚康

计算机与数字工程2017,Vol.45Issue(7):1391-1396,1401,7.
计算机与数字工程2017,Vol.45Issue(7):1391-1396,1401,7.DOI:10.3969/j.issn.1672-9722.2017.07.034

基于SVM和有监督描述子学习算法的脑MR图像颅骨分割方法

Automated Segmentation Based on Support Vector Machine and Supervised Descriptor Learning from Brain MR Image

黄勇其 1史文博 2周志勇 3庞树茂 1佟宝同 4赵凌霄 1戴亚康1

作者信息

  • 1. 中国科学院苏州生物医学工程技术研究所 苏州215163
  • 2. 中国科学院大学 北京100049
  • 3. 北京师范大学 北京 100875
  • 4. 南方医科大学 广州510515
  • 折叠

摘要

Abstract

A solution of EEG/MEG forward problem is essential and important in stereotactic neurosurgery applications.It is necessary to build a multi-layer brain model to distinguish different tissues for MEG/EEG forward problem.Although soft tissues can be clearly seen in MR images,but the intensity of skull is so low because of a lack of hydrogen in skull that can't be segmented automatically and accurately from MR image.Extracting skull form MR image automatically end up to be a key problem when calculating the MEG/EEG forward problem.In order to solve the above problem,a support vector machine(SVM) is proposed based segmentation algorithm using global features and local features of MR image.Moreover,the supervised descriptor learning(SDL) algorithm is combined that can transform the feature matrix into a compact one,and finally the skull from brain MR image is extrated by training on multi-modal images from the same patient whose CTs and MRs are available.Compared to the algorithm based on SVM only and mathematical morphology based algorithm,the proposed method shows a considerable improvement on segmentation accuracy.The proposed method achieves an accuracy with Dice coefficient 0.832 compared with the other two methods 0.798 and 0.482.The proposed hybrid algorithm extract the skull successfully,so that the EEG,MEG source imaging problem can be solved easily in future work.

关键词

颅骨分割/支持向量机/有监督描述子学习算法/特征提取/特征压缩

Key words

skull segmentation/support vector machine (SVM)/supervised descriptor learning (SDL)/feature extraction/feature compression

分类

信息技术与安全科学

引用本文复制引用

黄勇其,史文博,周志勇,庞树茂,佟宝同,赵凌霄,戴亚康..基于SVM和有监督描述子学习算法的脑MR图像颅骨分割方法[J].计算机与数字工程,2017,45(7):1391-1396,1401,7.

基金项目

中国科学院百人计划项目 ()

国家自然科学基金(编号:61301042) (编号:61301042)

国家863计划(编号:2015AA020514) (编号:2015AA020514)

国家自然科学基金青年基金项目(编号:61501452) (编号:61501452)

江苏省博士后基金项目(编号:1501089C)资助. (编号:1501089C)

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文