数学杂志2017,Vol.37Issue(5):889-897,9.
行m-NSD随机变量阵列的完全收敛性
COMPLETE CONVERGENCE FOR ARRAYS OF ROWWISE M-NSD RANDOM VARIABLES
摘要
Abstract
In this article, we study complete convergence theorems for arrays of rowwise m-negatively superadditive-dependent (m-NSD) random variables. By using Kolmogorov-type ex-ponential inequality for m-NSD random variables, we obtain complete convergence theorems for arrays of rowwise m-NSD random variables, which generalize those on complete convergence theo-rem previously obtained by Hu et al. (1998) and Sung et al. (2005) from independent distributed case to m-NSD arrays. Our results also extend the corresponding results of Chen et al.(2008), Hu et al. (2009), Qiu et al. (2011) and Wang et al. (2014).关键词
Kolmogorov型指数不等式/完全收敛性/m-NSD随机变量Key words
Kolmogorov-type exponential inequality/complete convergence/m-NSD ran-dom variables分类
数理科学引用本文复制引用
冯凤香,王定成,吴群英..行m-NSD随机变量阵列的完全收敛性[J].数学杂志,2017,37(5):889-897,9.基金项目
Supported by National Natural Science Foundation of China (71271042 ()
11361019) ()
Research Pro ject of Guangxi High Institution (YB2014150). (YB2014150)