| 注册
首页|期刊导航|数学杂志|偏微分方程边值反问题的数值方法研究

偏微分方程边值反问题的数值方法研究

易苗 刘扬

数学杂志2017,Vol.37Issue(5):1040-1046,7.
数学杂志2017,Vol.37Issue(5):1040-1046,7.

偏微分方程边值反问题的数值方法研究

NUMERICAL METHODS FOR SOLVING INVERSE BOUNDARY VALUE PROBLEM OF PARTIAL DIFFERENTIAL EQUATION

易苗 1刘扬2

作者信息

  • 1. 武汉大学数学与统计学院,湖北武汉 430072
  • 2. 武汉理工大学理学院,湖北武汉 430070
  • 折叠

摘要

Abstract

In this paper, we study the application problem of singular integral equation in the inverse boundary value problem. Using the natural integral equation and its inversion formula on a circle, we transformed the Laplace equation inverse boundary value problem into a combination of a hypersingular integral equation and a weakly singular integral equation, then construct the corresponding collocation scheme based on the trigonometric interpolation, and use the Tikhonov regularization to solve the resulting linear equations. Numerical experiments show the effectiveness of the method.

关键词

边值反问题/奇异积分方程/三角插值/Tikhonov正则化

Key words

inverse boundary value problem/singular integral equation/trigonometric interpolation/Tikhonov regularization

分类

数理科学

引用本文复制引用

易苗,刘扬..偏微分方程边值反问题的数值方法研究[J].数学杂志,2017,37(5):1040-1046,7.

基金项目

国家自然科学基金(11201358) (11201358)

中央高校基本科研业务费专项资金资助(2015IA007). (2015IA007)

数学杂志

OACSTPCD

0255-7797

访问量0
|
下载量0
段落导航相关论文