| 注册
首页|期刊导航|现代电子技术|粒子群优化算法选择特征的运动图像分类

粒子群优化算法选择特征的运动图像分类

吴雪

现代电子技术2017,Vol.40Issue(17):47-50,4.
现代电子技术2017,Vol.40Issue(17):47-50,4.DOI:10.16652/j.issn.1004-373x.2017.17.012

粒子群优化算法选择特征的运动图像分类

Moving image classification based on particle swarm optimization algorithm selecting features

吴雪1

作者信息

  • 1. 武汉工程大学,湖北 武汉 430205
  • 折叠

摘要

Abstract

In order to improve the effect of image classification and realize the accurate image classification,a moving image classification method based on particle swarm optimization algorithm selecting features is proposed. The current research status of the moving image classification methods is analyzed to extract the images of different types. The particle swarm optimization algorithm is used to select the optimal feature to compose the feature vector. The feature vector machine is taken as the input of neural network to classify the moving images. The classification experiments of specific images were adopted to make verification. The experimental results show that the method can describe the categories information of different moving images,reduce the classification error of the images,avoid the defects of other image classification methods,and improve the overall image classifi-cation accuracy.

关键词

运动图像/特征选择/粒子群算法/图像分类

Key words

moving image/feature selection/particle swarm optimization algorithm/image classification

分类

信息技术与安全科学

引用本文复制引用

吴雪..粒子群优化算法选择特征的运动图像分类[J].现代电子技术,2017,40(17):47-50,4.

现代电子技术

OA北大核心CSTPCD

1004-373X

访问量0
|
下载量0
段落导航相关论文