| 注册
首页|期刊导航|电讯技术|一种应用于欠采样图像的自适应稀疏重建方法

一种应用于欠采样图像的自适应稀疏重建方法

管春 陶勃宇

电讯技术2017,Vol.57Issue(9):981-985,5.
电讯技术2017,Vol.57Issue(9):981-985,5.DOI:10.3969/j.issn.1001-893x.2017.09.001

一种应用于欠采样图像的自适应稀疏重建方法

An Adaptive Sparse Reconstruction Method for Undersampling Images

管春 1陶勃宇1

作者信息

  • 1. 重庆邮电大学 光电工程学院,重庆400065
  • 折叠

摘要

Abstract

Considering the image detail loss and staircase effect problems caused by the fixed parameters of total variation( TV) regularization constraints in image spare reconstruction,this paper proposes an adaptive sparse image reconstruction algorithm by using second-order total generalized variation( TGV) model as the regularization constraints. The second-order TGV model is applied to balance the first and second derivative in images,and it can automatically modify the weights on the basis of each iteration solution and tensor func-tion to achieve image sparse reconstruction. Simulation results show that compared with the TV model and fixed TGV model,this algorithm can maintain both image detail information and image outline,as well as im-proving peak signal-to-noise ratio( PSNR) and structure similarity( SSIM) of the reconstructed image.

关键词

图像处理/稀疏重建/压缩感知/广义全变分/自适应正则约束/分裂Bregman算法

Key words

image processing/sparse reconstruction/compressed sensing/total generalized variation/adap-tive regularization term/split Bregman algorith

分类

信息技术与安全科学

引用本文复制引用

管春,陶勃宇..一种应用于欠采样图像的自适应稀疏重建方法[J].电讯技术,2017,57(9):981-985,5.

电讯技术

OA北大核心CSTPCD

1001-893X

访问量0
|
下载量0
段落导航相关论文