| 注册
首页|期刊导航|中国机械工程|基于谐波小波包和BSA优化LS-SVM的铣刀磨损状态识别研究

基于谐波小波包和BSA优化LS-SVM的铣刀磨损状态识别研究

董彩云 张超勇 孟磊磊 肖鹏飞 罗敏 林文文

中国机械工程2017,Vol.28Issue(17):2080-2089,2108,11.
中国机械工程2017,Vol.28Issue(17):2080-2089,2108,11.DOI:10.3969/j.issn.1004-132X.2017.17.011

基于谐波小波包和BSA优化LS-SVM的铣刀磨损状态识别研究

State Recognition of Milling Tool Wears Based on Harmonic Wavelet Packet and BSA Optimization LS-SVM

董彩云 1张超勇 1孟磊磊 1肖鹏飞 1罗敏 2林文文3

作者信息

  • 1. 华中科技大学机械学院数字制造装备与技术国家重点实验室,武汉,430074
  • 2. 湖北汽车工业学院电气与信息工程学院,十堰,442002
  • 3. 宁波大学机械工程与力学学院,宁波,315211
  • 折叠

摘要

Abstract

Aiming at the problems of milling tool wear state recognitions,a state recognition method was proposed based on harmonic wavelet packet and LS-SVM.To overcome the band overlap-ping problems in traditional wavelet packet decompositions,the milling force signal energies of each bands were extracted in different wear states by harmonic wavelet packet,which were brought in multi-class LS-SVM classifier after normalizing,then the classification recognition of different cutting tool states was achieved.BSA was proposed to search the optimal values of the kernel functional pa-rameters and error penalty factors which affected the precision of the LS-SVM significantly.Experi-mental results show that harmonic wavelet packet is more effective and feasible than wavelet packet, and the proposed milling tool wear recognition method has higher accuracy.

关键词

刀具磨损/谐波小波包/回溯搜索算法/最小二乘支持向量机

Key words

tool wear/harmonic wavelet packet/backtracking search algorithm (BSA)/least squares support vector machine(LS-SVM)

分类

机械制造

引用本文复制引用

董彩云,张超勇,孟磊磊,肖鹏飞,罗敏,林文文..基于谐波小波包和BSA优化LS-SVM的铣刀磨损状态识别研究[J].中国机械工程,2017,28(17):2080-2089,2108,11.

基金项目

国家自然科学基金资助项目(51575211,51421062) (51575211,51421062)

国家自然科学基金国际(地区)合作与交流项目(51561125002) (地区)

湖北省自然科学基金资助项目(2014CFB348) (2014CFB348)

高等学校学科创新引智计划资助项目(B16019) (B16019)

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量2
|
下载量0
段落导航相关论文