| 注册
首页|期刊导航|计算机工程与应用|基于全卷积神经网络的肝脏CT影像分割研究

基于全卷积神经网络的肝脏CT影像分割研究

郭树旭 马树志 李晶 张惠茅 孙长建 金兰依 刘晓鸣 刘奇楠 李雪妍

计算机工程与应用2017,Vol.53Issue(18):126-131,6.
计算机工程与应用2017,Vol.53Issue(18):126-131,6.DOI:10.3778/j.issn.1002-8331.1611-0523

基于全卷积神经网络的肝脏CT影像分割研究

Fully convolutional neural network for liver segmentation in CT image

郭树旭 1马树志 1李晶 2张惠茅 2孙长建 1金兰依 1刘晓鸣 1刘奇楠 1李雪妍1

作者信息

  • 1. 吉林大学 电子科学与工程学院,长春 130012
  • 2. 吉林大学 白求恩第一医院 放射科,长春 130021
  • 折叠

摘要

Abstract

Abdominal CT images cover problems such as low contrast in adjacent organs and various performance in shape. A liver segmentation model based on fully convolutional neural network is proposed. Firstly, the deep and abstract features of the image are extracted by convolutional neural network. Then interpolated reconstruction is performed through deconvolution operation on the extracted feature map to obtain segmentation results. Due to the simple deconvolu-tion acquiring segmentation results are usually rough. Before deconvolution, it applies characteristics mergence to upper and lower layers, increases the deconvolution-layer amount and reduces deconvolution-step size on the model, then gets accurate segmentation results. Compared to convolution neural network, this model can fully use the spatial information of CT images. Experimental results demonstrate, this model can segment abdominal liver region in CT images and reach much higher accuracy.

关键词

深度学习/全卷积神经网络/医学图像分割

Key words

deep learning/fully convolutional neural network/medical image segmentation

分类

信息技术与安全科学

引用本文复制引用

郭树旭,马树志,李晶,张惠茅,孙长建,金兰依,刘晓鸣,刘奇楠,李雪妍..基于全卷积神经网络的肝脏CT影像分割研究[J].计算机工程与应用,2017,53(18):126-131,6.

基金项目

吉林省自然科学基金(No.20140101175JC). (No.20140101175JC)

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文