| 注册
首页|期刊导航|工矿自动化|基于信息融合和神经网络的煤岩识别方法

基于信息融合和神经网络的煤岩识别方法

雷静 余斌

工矿自动化2017,Vol.43Issue(9):102-105,4.
工矿自动化2017,Vol.43Issue(9):102-105,4.DOI:10.13272/j.issn.1671-251x.2017.09.018

基于信息融合和神经网络的煤岩识别方法

Identification method of coal and rock based on information fusion and neural network

雷静 1余斌2

作者信息

  • 1. 成都农业科技职业学院信息技术分院,四川成都611130
  • 2. 中国矿业大学机电工程学院,江苏徐州 221116
  • 折叠

摘要

Abstract

In view of problems that coal and rock identification systems use single sensor to monitor data and have low precision,reliability and stability,an identification method of coal and rock based on information fusion and neural network was proposed.A variety of necessary sensors are added to the existing shearer,which are used to collect current,pressure,vibration frequency,acceleration and other signals of the shearer under different situations.Wavelet packet is used for characteristics extraction,and BP neural network is used for data fusion,so as to achieve coal and rock identification.The test results of the real machine show that the identification error of the proposed method is within ±0.5,which verifies its validity.

关键词

煤炭开采/煤岩识别/采煤机/多传感器系统/信息融合/神经网络

Key words

coal mining/coal and rock identification/shearer/multi-sensor system/information fusion/neural network

分类

矿业与冶金

引用本文复制引用

雷静,余斌..基于信息融合和神经网络的煤岩识别方法[J].工矿自动化,2017,43(9):102-105,4.

基金项目

成都农业科技职业学院科研项目(CNY15-17). (CNY15-17)

工矿自动化

OA北大核心CSTPCD

1671-251X

访问量0
|
下载量0
段落导航相关论文