| 注册
首页|期刊导航|水利水电科技进展|基于EEMD-AR模型的丹江口水库年径流随机模拟与预报

基于EEMD-AR模型的丹江口水库年径流随机模拟与预报

练继建 孙萧仲 马超 赵明 唐志波

水利水电科技进展2017,Vol.37Issue(5):16-21,6.
水利水电科技进展2017,Vol.37Issue(5):16-21,6.DOI:10.3880/j.issn.1006-7647.2017.05.003

基于EEMD-AR模型的丹江口水库年径流随机模拟与预报

Stochastic simulation and prediction of annual runoff in the Danjiangkou Reservoir based on EEMD-AR model

练继建 1孙萧仲 1马超 1赵明 1唐志波1

作者信息

  • 1. 天津大学水利工程仿真与安全国家重点实验室,天津 300072
  • 折叠

摘要

Abstract

Based on the analysis and identification of the annual runoff sequence components of the Danjiangkou Reservoir, deterministic components such as the trend term, the jumping term and the periodic term were derived by using linear trend regression analysis method, sequential cluster method and variance spectrum method, etc. A stochastic auto-regression model of annual runoff based on Ensemble Empirical Mode Decomposition ( EEMD) was proposed ( EEMD-AR) and it was applied to the stochastic simulation and prediction of the annual runoff in the Danjiangkou Reservoir. Through the EEMD decomposition, the problem that stochastic simulation and prediction by auto-regression ( AR) model cannot be directly applied due to the non-stationary historical runoff sequence of the Danjiangkou Reservoir has been solved. The simulation results show that EEMD-AR model can simulate and predict the annual runoff sequence of the Danjiangkou Reservoir in a good forecast accuracy and it maintain the statistical characteristics of the original historical sequence.

关键词

径流序列成分识别/EEMD-AR模型/径流随机模拟/丹江口水库

Key words

Runoff sequence components identification/EEMD-AR model/runoff stochastic simulation/Danjiangkou Reservoir

分类

建筑与水利

引用本文复制引用

练继建,孙萧仲,马超,赵明,唐志波..基于EEMD-AR模型的丹江口水库年径流随机模拟与预报[J].水利水电科技进展,2017,37(5):16-21,6.

基金项目

国家重点研发计划水资源高效利用专项(2016YFC0402203) (2016YFC0402203)

水利水电科技进展

OA北大核心CSCDCSTPCD

1006-7647

访问量0
|
下载量0
段落导航相关论文