| 注册
首页|期刊导航|北京大学学报(自然科学版)|非线性有限元方程组的弧长延拓算法

非线性有限元方程组的弧长延拓算法

殷有泉 邸元 姚再兴

北京大学学报(自然科学版)2017,Vol.53Issue(5):793-800,8.
北京大学学报(自然科学版)2017,Vol.53Issue(5):793-800,8.DOI:10.13209/j.0479-8023.2017.072

非线性有限元方程组的弧长延拓算法

Arc-Length Continuation Algorithm for Nonlinear Finite Element Equations

殷有泉 1邸元 1姚再兴2

作者信息

  • 1. 北京大学工学院, 北京 100871
  • 2. 北京力算科技有限公司, 北京 100013
  • 折叠

摘要

Abstract

Stability analysis of engineering structures requires tracing equilibrium path of the structure when member's buckling or material softening occurs. In nonlinear finite element analysis, the traditional Newton method fails at limit point and bifurcation point. The arc-length continuation method can overcome these numerical difficulties. To develop a nonlinear finite element code for stability analysis, the standard iteration formulation of Newton method is presented for the arc-length continuation method. Two practical formulations of the arc-length continuation method and their relationships with the standard form are also discussed. The applicability of the practical formulation is examined by the finite element analysis of stability for a slope.

关键词

弧长延拓算法/平衡路径曲线/非线性分析/牛顿迭代法/有限元方法

Key words

arc-length continuation algorithm/equilibrium path curve/nonlinear analysis/Newton iteration method/finite element method

分类

通用工业技术

引用本文复制引用

殷有泉,邸元,姚再兴..非线性有限元方程组的弧长延拓算法[J].北京大学学报(自然科学版),2017,53(5):793-800,8.

基金项目

国家科技重大专项(2016ZX05014)和国家自然科学基金(51674010)资助 (2016ZX05014)

北京大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0479-8023

访问量0
|
下载量0
段落导航相关论文