| 注册
首页|期刊导航|电测与仪表|基于振动分析法的变压器故障分类和识别

基于振动分析法的变压器故障分类和识别

夏玉剑 李敏 陈果 石同春 沈大千 王昕

电测与仪表2017,Vol.54Issue(17):7-10,17,5.
电测与仪表2017,Vol.54Issue(17):7-10,17,5.

基于振动分析法的变压器故障分类和识别

The classification and recognition of transformer fault based on vibration analysis

夏玉剑 1李敏 2陈果 2石同春 2沈大千 2王昕1

作者信息

  • 1. 上海交通大学电工与电子技术中心,上海200240
  • 2. 国网四川省电力有限公司广安供电公司,四川广安638500
  • 折叠

摘要

Abstract

In order to achieve the fault identification and classification intuitively of transformer fault , this paper pro-poses a method of transformer fault detection method based on PCA ( principal component analysis ) and KNN ( K-Nearest Neighbor ) classification and recognition .In this paper , vibration signals from different transformer states are decomposed by EMMD ( ensemble empirical mode decomposition ) to abstract feature vectors which are projected onto a visual two-dimensional image .KNN classification is applied to verify fault classification and achieve automatic fault identification .Experimental results show that this method can achieve classification of a normal state of transformer , winding deformation and the core fault respectively , which can realize automatically pattern recognition of test sample .

关键词

振动分析法/集合经验模式分解/特征矢量/主成分分析/K近邻法

Key words

vibration analysis/ensemble empirical mode decomposition/feature vector/principal componentanalysis/K-Nearest Neighbor

分类

信息技术与安全科学

引用本文复制引用

夏玉剑,李敏,陈果,石同春,沈大千,王昕..基于振动分析法的变压器故障分类和识别[J].电测与仪表,2017,54(17):7-10,17,5.

基金项目

国家自然科学基金重点项目(61533012) (61533012)

上海市自然科学基金资助项目(14ZR1421800) (14ZR1421800)

电测与仪表

OA北大核心

1001-1390

访问量0
|
下载量0
段落导航相关论文