南京信息工程大学学报2017,Vol.9Issue(4):381-390,10.DOI:10.13878/j.cnki.jnuist.2017.04.004
一类三次超越多项式零点的分布及其在时滞生物系统的应用
On the distribution of zeros of a third-degree exponential polynomial with applications to delayed biological systems
摘要
Abstract
We consider the distribution of roots to a general third-order exponential polynomial equation and give detailed conditions about when all roots lie on the left half plane,a pair of roots cross the imaginary axis and enter the right half plane.These results can be used to discuss the local stability and Hopf bifurcation of three-dimensional biological systems with delay.We apply our results to the three-species delayed food chain models,delayed models for the control of testosterone secretion,delayed models of within-host HIV infection of CD4+T-cells,glucose-insulin systems with delay,and tumor-immune system interaction models with delay.关键词
时滞微分方程/稳定性/分支/超越方程/生物系统Key words
delayed differential equations/stability/bifurcation/transcendental equation/biological systems分类
数理科学引用本文复制引用
阮士贵,魏俊杰,肖冬梅..一类三次超越多项式零点的分布及其在时滞生物系统的应用[J].南京信息工程大学学报,2017,9(4):381-390,10.基金项目
美国NSF基金(DMS-1412454) (DMS-1412454)
国家自然科学基金(11371248) (11371248)