| 注册
首页|期刊导航|电网技术|基于深度学习的电力系统故障后暂态稳定评估研究

基于深度学习的电力系统故障后暂态稳定评估研究

胡伟 郑乐 闵勇 董昱 余锐 王磊

电网技术2017,Vol.41Issue(10):3140-3146,7.
电网技术2017,Vol.41Issue(10):3140-3146,7.DOI:10.13335/j.1000-3673.pst.2017.1889

基于深度学习的电力系统故障后暂态稳定评估研究

Research on Power System Transient Stability Assessment Based on Deep Learning of Big Data Technique

胡伟 1郑乐 1闵勇 1董昱 2余锐 2王磊3

作者信息

  • 1. 电力系统及发电设备控制和仿真国家重点实验室(清华大学电机系),北京市 海淀区 100084
  • 2. 国家电网公司西南分部,四川省 成都市 610041
  • 3. 中国电力科学研究院,北京市 海淀区 100192
  • 折叠

摘要

Abstract

In order to maintain the stable operation of power system, it is important to assess transient stability quickly and accurately. However, traditional methods cannot satisfy quickness and accuracy simultaneously. With big data technique, a deep learning based transient stability assessment method has been proposed in this paper. Firstly, the stability rule learned by machine learning method is interpreted as the stability region boundary. Then the deep belief network is utilized to map the original feature space to a representation space, where the stable cases can be linearly separated from the unstable cases. Finally, simulations in a province power system have validated the proposed algorithm. The proposed method can provide new directions to online transient stability assessment for its quickness and accuracy.

关键词

暂态稳定评估/稳定域/深度置信网络/深度学习/大数据技术

Key words

transient stability assessment/stability region/deep belief network/deep learning/big data technique

分类

信息技术与安全科学

引用本文复制引用

胡伟,郑乐,闵勇,董昱,余锐,王磊..基于深度学习的电力系统故障后暂态稳定评估研究[J].电网技术,2017,41(10):3140-3146,7.

基金项目

国家电网公司科技项目 ()

清华大学电力系统国家重点实验自主课题(SKLD16Z08).Project Supported by Science and Technology Project of State Grid Corporation of China (SKLD16Z08)

Science and Technology Project of State Key Lab of Power System of Tsinghua University (SKLD16Z08). (SKLD16Z08)

电网技术

OA北大核心CSCDCSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文