| 注册
首页|期刊导航|计算机科学与探索|非均衡加权随机梯度下降SVM在线算法

非均衡加权随机梯度下降SVM在线算法

鲁淑霞 周谧 金钊

计算机科学与探索2017,Vol.11Issue(10):1662-1671,10.
计算机科学与探索2017,Vol.11Issue(10):1662-1671,10.DOI:10.3778/j.issn.1673-9418.1609009

非均衡加权随机梯度下降SVM在线算法

Imbalanced Weighted Stochastic Gradient Descent Online Algorithm for SVM

鲁淑霞 1周谧 1金钊1

作者信息

  • 1. 河北大学 数学与信息科学学院 河北省机器学习与计算智能重点实验室,河北 保定 071002
  • 折叠

摘要

Abstract

Stochastic gradient descent (SGD) has been applied to large scale support vector machine (SVM) training. Stochastic gradient descent takes a random way to select points during training process, this leads to a result that the probability of choosing majority class is far greater than that of choosing minority class for imbalanced classifica-tion problem. In order to deal with large scale imbalanced data classification problems, this paper proposes a method named weighted stochastic gradient descent algorithm for SVM. After the samples in the majority class are assigned a smaller weight while the samples in the minority class are assigned a larger weight, the weighted stochastic gradi-ent descent algorithm will be used to solving the primal problem of SVM, which helps to reduce the hyperplane off-set to the minority class, thus solves the large scale imbalanced data classification problems.

关键词

随机梯度下降(SGD)//非均衡数据/大规模学习/支持向量机(SVM)

Key words

stochastic gradient descent (SGD)/weight/imbalanced data/large scale learning/support vector ma-chine (SVM)

分类

信息技术与安全科学

引用本文复制引用

鲁淑霞,周谧,金钊..非均衡加权随机梯度下降SVM在线算法[J].计算机科学与探索,2017,11(10):1662-1671,10.

基金项目

The Natural Science Foundation of Hebei Province under Grant No. F2015201185 (河北省自然科学基金). (河北省自然科学基金)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文