四川师范大学学报(自然科学版)2017,Vol.40Issue(4):478-481,4.DOI:10.3969/j.issn.1001-8395.2017.04.008
非线性一阶周期边值问题解的分歧结构
Bifurcation Structure of Nonlinear First-order Periodic Boundary Value Problems
摘要
Abstract
In this paper,we use bifurcation theory and continuation theory to show the multiplicity results for first-order periodic boundary value problem {u'+λu+f(t,u) =h(t),t∈[0,T],u(0) =u(T)where h ∈ C[0,T] and [o h(s)ds =0;f∈ C([0,T] x R,R) and satisfies the generalized sign condition,T>0,λ ∈ R is a parameter.We show that there exist λ +,λ _ >0,such that this problem has at least one solution ifλ ∈ [O,λ +] and has at least three solutions if λ e [-λ _,0).关键词
分歧理论/一阶周期边值问题/多解性Key words
bifurcation theory/first-order periodic boundary value problem/multiplicity results分类
数理科学引用本文复制引用
马陆一,闫东亮,李晓燕..非线性一阶周期边值问题解的分歧结构[J].四川师范大学学报(自然科学版),2017,40(4):478-481,4.基金项目
国家自然科学基金(11671322) (11671322)